Como o Machine Learning leva imagens de satélite a um outro nível

Inteligência Artificial, Internet das Coisas e Transformação Digital. Nunca se falou tanto em inovações tecnológicas como nos dias de hoje. A importância de se adaptar e acompanhar as mudanças que o mundo exige vem crescendo a cada dia, principalmente no mundo dos negócios.

Entre as milhares de possibilidades que a Inteligência Artificial (IA) fornece ao mundo está o Machine Learning, termo que remete a uma tecnologia em que os computadores são capazes de aprender e responder, com base em uma análise de diferentes tipos de dados.

A Inteligência Artificial nos permite encontrar informações dentro destes dados analisados, afinal, se não forem bem utilizados, os dados por si só não têm utilidade alguma. Por isso, o Machine Learning está presente de várias formas no nosso dia a dia como, por exemplo, na utilização de alguns aplicativos e nos inúmeros sites de compras online.

Uma análise realizada pela McKinsey no ano de 2018 com mais de 400 casos de uso, mostrou que a Inteligência Artificial é superior a técnicas tradicionais de analytics em 69% dos casos de uso potencial. Além disso, a mesma análise comprovou que as aplicações de IA podem ser vistas em todos os setores da economia e em diversas funções de negócios: desde o marketing até as operações da cadeia de suprimentos.

Se estas tecnologias disruptivas atingem absolutamente todos os mercados, com os setores espacial e agrícola não poderia ser diferente.

Em entrevista para a Forbes Insider, Cleber Oliveira Soares, diretor de inovação do Ministério da Agricultura, Pecuária e Abastecimento (MAPA), falou sobre a digitalização do agronegócio. Para ele, a tendência é que, no mundo pós-pandemia, o setor de agronegócios sofra transformações profundas, acelerando a digitalização de toda a cadeia. “Essa transformação digital envolve a aceleração da adoção de uma série de tecnologias de ponta. A gestão eficiente de dados, por meio de Big Data, por exemplo, é capaz de melhorar a informação sobre insumos, condições climáticas e maquinário a ponto de baixar custos e aumentar a produtividade”, afirmou Cleber.

Tecnologia aplicada na solução de problemas globais

A Hypercubes — uma das startups que investimos — nasceu dentro da Singularity University, no Vale do Silício, e desenvolve uma tecnologia que permite que nanossatélites fotografem a superfície da Terra, para analisar a saúde do solo, com o objetivo de acabar com a escassez de recursos para as próximas gerações.

Segundo dados do Ministério da Agricultura, Pecuária e Abastecimento, nas últimas décadas, a cadeia produtiva do setor agrícola tem produzido bens e serviços que somam R$1 trilhão por ano, incluindo insumos, produção agrícola, agroindústria e serviços relacionados a esta atividade. Sem dúvidas, a tecnologia pode aumentar e potencializar ainda mais os investimentos no setor.

Especificamente focada no agronegócio, a Hypercubes coloca o produtor no coração dessa ciência. Porém, logo no início da sua trajetória, os fundadores da startup perceberam um grande desafio que precisariam enfrentar: a tecnologia. A inteligência artificial e o hardware onde ela trafega se tornou democrático, e as tecnologias passaram a ser testadas de forma muito fácil. A grande dificuldade está em testar estas inovações no espaço.

A empresa foi criada no início de 2015, mas somente no ano de 2017 a primeira versão da tecnologia que eles necessitavam para realizar o processamento de dados dentro do próprio satélite, quase que em tempo real, passou a ser comercializada. “Com a democratização da tecnologia, encontramos a outra metade necessária para tornar possível o processamento remoto. Sem isso, levaríamos semanas para descer dados de cada satélite, calculamos que cada satélite gera 100 terabytes de dados a cada 90 minutos” contou Fábio Teixeira, fundador da Hypercubes.

Machine Learning na garantia de recursos às próximas gerações

Os algoritmos do Machine Learning influenciam, e muito, nas imagens dos satélites. Afinal, eles permitem um monitoramento ativo que constrói informações inteligentes, cunhadas a partir dos dados corretos, entregues no momento correto, para as pessoas certas e por um preço adequado.

Como o próprio nome diz, o processo utilizado pela Hypercubes funciona totalmente baseado no aprendizado das máquinas. Dentro de suas propriedades, os agricultores conseguem ensinar para os computadores todas as anomalias que podem atingir o solo da sua lavoura. Em seguida, as informações aprendidas voltam ao espaço, onde os satélites começam a fotografar a superfície da Terra e buscar por aquilo que lhes foi ensinado pelo produtor.

“Uma coisa é você tirar uma foto pra observar um problema, mas quando você processa esses dados no próprio satélite, você pode programar a constelação para que toda vez que ela sobrevoe, busque por aquele problema que já conhecemos. Saímos de um monitoramento passivo e vamos para um monitoramento ativo”, explica Fábio Teixeira.

Todo este processo de hardware, software e tecnologia embarcada faz com que problemas sejam detectados com antecedência, em estágio inicial. Assim, as plantações passam a oferecer melhores recursos, de forma mais sustentável e em maior quantidade, deixando a Hypercubes ainda mais próxima do seu principal objetivo: acabar com a fome no mundo.

“Quando colocamos em órbita uma constelação de satélites capaz de tirar fotos e processar dados diariamente, temos tudo o que o machine learning precisa — é um prato cheio para a inteligência artificial”, conclui o fundador da startup.

2Future is a holdings company formed by enterprises focused on supporting future generations.

2Future is a holdings company formed by enterprises focused on supporting future generations.